

Protecting Communities from Maritime Incidents Involving Airborne

Photographs courtesy UK Health Security Agency

ACKNOWLEDGEMENT

The work described in this report was supported by the Directorate-General for European Civil Protection and Humanitarian Aid Operations (DG-ECHO) of the European Union through the Grant Agreement number 101004912 - MANIFESTS — UCPM-2020-PP-AG, corresponding to the Call objective "Enhancing prevention and protection from the effects of maritime disasters" under priority 1: "Developing response capacity for marine pollution".

DISCLAIMER

The content of this document represents the views of the author only and is his/her sole responsibility; it cannot be considered to reflect the views of the European Commission and/or the Directorate-General for European Civil Protection and Humanitarian Aid Operations (DG-ECHO) or any other body of the European Union. The European Commission and the DG-ECHO is not responsible for any use that may be made of the information it contains.

Contents

1.	INTRODUCTION	. 5
2.	KEY ACTIONS	. 6
3.	RESPONSE ALGORITHM	. 7
4.	INFORMATION COLLECTION CHECKLIST	10
5.	USEFUL LINKS	11
ΛDD	ENDLY 1. REPRESENTATIVE PROTECTIVE ACTION CRITERIA	12

3

Project Acronym	MANIFESTS	
Project Full Title	MANaging risks and Impacts From Evaporating and gaseous Substances To population Safety	
Gant Agreement Nr. 101004912		
Project Website	https://www.manifests-project.eu/	

Deliverable Nr.	D3.1
Status (Final/Draft/Revised)	Final
Work Package	3
Task Number	3.2
Responsible Institute	CETMAR
Author/s	UK Health Security
Recommended Citation	
Dissemination Level	Open Source

Document History					
	Date	Modification Introduced			
Version		Modification Reason	Modified by		
01 Draft	January 2022	NA	NA		
02 Draft	April 2022	Edits	UKHSA		
03 Final	March 2023	Final	UKHSA		

1. INTRODUCTION

The aim of this guide is to aid decision making in the immediate aftermath of an incident, prior to receipt of detailed monitoring and modelling data.

The manual is aimed at those involved in managing initial response as well as those with emergency planning roles.

What **this guide is not** is a definitive assessment of site and hazard specific risks posed by a particular incident. This will need to be established as information from the scene, local conditions, and ongoing assessment data are collected.

Furthermore, this guide is targeted at protection of protecting the public and not aimed at response personnel located within the immediate source of the incident. Other guidance such as that prepared by response organisations, or The Emergency Response Guidebook¹ should be used by first responders for assessment of these areas.

The guide provides an approach for undertaking an assessment and is primarily designed to be used during training of responders. It can also be used as an aid during response to an incident, during the initial stages prior to receipt of detailed monitoring and modelling. A separate detailed guidance document details the development of the approach and should be read before using this manual.

MANIFESTS

¹ Emergency Response Guidebook (ERG) | PHMSA (dot.gov)

2. KEY ACTIONS

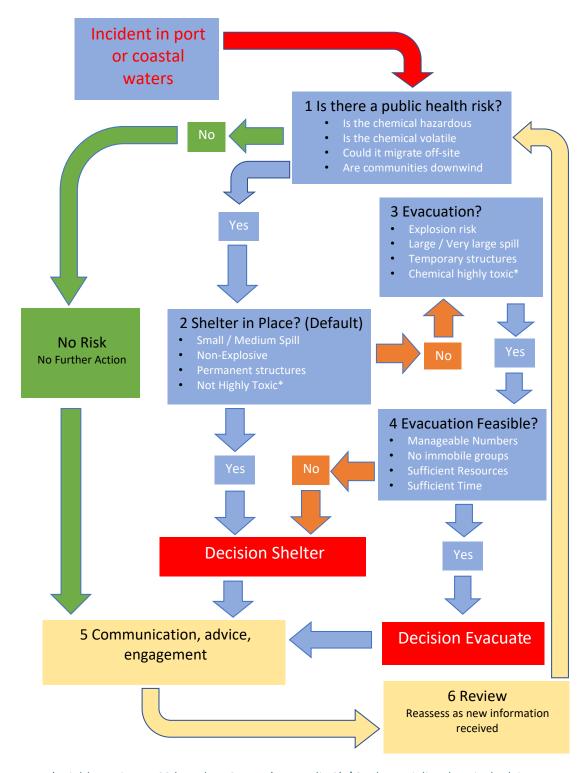
In the absence of detailed assessments, it will be necessary to provide a best estimate of risks to inform possible protective action options.

To complete this it is important to collect some basic data about the incident, (Checklist Section 4, links Section 5);

- Chemical(s) involved, their hazards and behaviour, and quantity released.
- Estimated duration of the release.
- Prevailing Weather conditions wind speed and direction, rainfall.
- Distance to receptors, building types, environment (rural or urban) and topography.

Using this information, a series of initial actions should be considered including

- Evacuation of the immediate area (hot zone) using responder protocols and / or guidance such as the Emergency Response Guidebook for zoning distances.
- Apply initial incident information to inform choice of immediate wider protective actions (Section 3), noting limitations of each option.
- Issue prompt clear advice via media and social media and, by means of physical attendance, if necessary and safe to do so.²
- Review advice as more detailed monitoring and modelling data are received
- Update messages as the incident develops
- Where sheltering advice has been provided, inform the public to reventilate properties as soon as the risk has passed.


Mitigation measures to terminate the release and / or reduce its movement for should also be initiated as soon as possible using recognised techniques.

 $^{^2}$ Further details on communications are presented in the main guidance document. Also liaise with comms teams within the response group / agency

3. RESPONSE ALGORITHM³

^{*} Highly Toxic - PAC2 less than 2 ppm (Appendix 2) / Seek specialist chemical advice

³ Factors listed in each box are considerations to aid decision process and should be reviewed in context of site conditions. Final decisions will require an element of judgement by the responder. See also pages 8 and 9

Algorithm Guidelines

If there is a potential risk to a wider community? (<1.5 km downwind⁴)

Default advice should be **Shelter in Place –** Stay indoors preferably in a room away from the wind and on an upper floor. Close all doors and windows and turn off air conditioning / ventilation systems. If instructed place damp towels cloths around doors and windows. Monitor media / social media for updates.

Challenges to default advice

Is there a risk of explosion affecting the community?

Is the release likely to be prolonged i.e., more than 2 hours? (large / very large ongoing release of gas, or large / very large spill of evaporating substance. In contrast, an instantaneous large / very large release of gas or vapour may result in a rapidly formed major cloud moving off site and may make evacuation unsafe)

Are there communities in temporary structures (tents, caravans, cabins)?

Is the chemical considered highly toxic (Seek expert chemical advice - Appendix 1)?

If yes to any of the above

Consider Evacuation where feasible i.e., can be achieved before outdoor concentrations become hazardous (2 hours⁵), have sufficient resources / infrastructure to manage evacuation, provide rest centres and if necessary, offer decontamination facilities.

Further Considerations

If not feasible where susceptible / immobile populations are present and cannot be evacuated easily or where this may pose unacceptable risk to health from acute exposure, revert to default shelter advice for this group.

Communicate Advice promptly – using all available channels

Review

Review decisions upon receipt of any new information from scene, or from monitoring / modelling. Update Messages after each review. Where and when appropriate inform communities to ventilate buildings

Provide ongoing advice regards longer term concerns (residual deposition on surfaces, crops / foodstuff, sorbed chemicals on fabrics / furnishings) and on support available (medical, well-being, economic, social)

⁵ 2 hours is indicative and can be reviewed in line with local emergency plans

⁴ 1.5 km is indicative and should be reviewed as site information develops or in line with local emergency plans

Additional assessment aids

- Sheltering can be an effective mechanism for reducing exposure to peak concentrations over a limited time, but it may be less effective at reducing cumulative exposure over a longer time period as concentrations build up indoors.
- Studies have estimated the limit at which sheltering indoors might cease being effective, ranges from 30 minutes to a few hours, although sheltering for longer can be viable if outdoor exposures remain low and/or intermittent.
- Short duration releases are likely to result in higher outdoor concentrations downwind favouring shelter.
- Ongoing longer duration release are likely to increase indoor concentrations favouring evacuation.
- Evacuation is often most appropriate for smaller discrete populations and also for non-residential settings such as commercial buildings, workplaces, educational facilities.

4. INFORMATION COLLECTION CHECKLIST

Category	Enter Incident Information He	re Decision Prompts
Chemical(s)		Confirmed/ Suspected
Name		Multiple (use additional
CAS No		sheets)
UN No		Hazardous Y/N
Hazards	Toxic	PAC / IDLH
	Flammable / Explosive	Immediate explosion
	Both	risk? If yes consider
		evacuation
Size ⁶	Small / medium – Drum(s) /	Use to estimate duration
	cylinder(s) / IBC(s)	as below
	Large – road tanker / ISO	
	V Large – Ship / shore tank	
Likely	Small <1 hour	Prolonged >2 hours?
Duration	Large >1 - >2 hours	If L/VL release consider
	V large > 2 hours	evacuation
Buoyancy	Heavier than Air	Dense gases may be less
	Lighter than Air	mobile (see points below)
	Fire (lighter than air)	favouring shelter
Location	Port (urban) / Coastal (rural)	Check feasibility for
	Nearest downwind	evacuation
	community (m)	<1.5 km priority concern
	Vulnerable communities?	May limit evacuation
	Temporary structures?	May limit shelter
Topography	Cliffs / Slopes	Steep slopes may impede
	Flat	migration of dense gases
Wind	Light <10 km/h	May affect migration
Speed	Moderate 10 – 20 km/h	Check possible changes
	Strong >20 km/h	in wind direction
Rainfall	Yes / No	Wash out to ground
Time of Day	Day / Night	May affect comms options

⁶ Sizes quoted in table are indicative to give initial estimate. Actual spill size may also depend upon the nature of the damage to the vessel(s) involved.

5. USEFUL LINKS

The following table provides links to suggested sources for information on incident parameters

Subject	Source		
Chemical Hazards	HNS-MS		
	CAMEO Chemicals NOAA		
Standards (PACs / IDLH)	https://www.epa.gov/aegl/access-acute-exposure-guideline-		
	levels-aegls-values#chemicals		
	https://edms.energy.gov/pac/Search		
	Immediately Dangerous to Life or Health NIOSH CDC		
Isolation Zones	Emergency Response Guidebook (ERG) PHMSA (dot.gov)		
Modelling	Chemical Meteorology (CHEMET) service - Met Office		
	ALOHA Software US EPA		
	MANIFESTS - Home (manifests-project.eu)		
Incident Management	www.westmopoco.rempec.org		
(Maritime HNS)			
Incident Management	<u>Gaseous releases from maritime incidents — REMPEC Regional</u> <u>Marine Pollution Emergency Response Centre for the</u>		
(Maritime Gas)	Mediterranean Sea (REMPEC)		
Incident Management (Public	WHO manual for the public health management of chemical		
Health)	<u>incidents</u>		
Communication	Arcopol / Training & Awareness		
	EU Hazrunoff Project		

APPENDIX 1: REPRESENTATIVE PROTECTIVE ACTION CRITERIA

		1 hour	8 hour	Odour	Conversion
Chemical Name	PAC Level	mg/m³	mg/m³	mg/m³	from mg/m³ to ppm
Ammonia	PAC-1	21.0	21.0	4.0	
Ammonia	PAC-2	77.0	77.0	4.0	X 1.4
Chlorine	PAC-1	1.5	1.5	4.5	V 0 05
Chionne	PAC-2	5.8	2.0	1.5	X 0.35
Lludrogen Culphide	PAC-1	0.70	0.46	0.014	
Hydrogen Sulphide	PAC-2	39.0	24.0	0.014	X 0.7
Hydrogon oblorido	PAC-1	2.7	2.7	0.1 to 1.4	V 0 =
Hydrogen chloride	PAC-2	33.0	17.0	0.1 (0 1.4	X 0.7
Uvdragan Fluorida	PAC-1	0.8	0.8	0.017	X 1.2
Hydrogen Fluoride	PAC-2	20.0	10.0	0.017	
Benzene (BTEX)	PAC-1	170.0	29.0	4.9	X 0.3
Methane (LNG)	PAC-1	43000.0	-	NA	V 4 F
Flammability	PAC-2	150000.0	-	INA	X 1.5
Butane (LPG)	PAC-1	13000.0	13000.0	3.0	V 0 4
Butane (Er G)	PAC-2	40000.0	40000.0	3.0	X 0.4
Ethylene Oxide	PAC-1	NA	NA	470.0	V 0.5
Littylette Oxide	PAC-2	81.0	14.0	470.0	X 0.5
Kerosene (Jet Fuel	PAC-1	290.0	290.0	0.6	X 0.12
JP5 and 8)	PAC-2	1100.0	1100.0	0.0	
Gasoline (as	PAC-1	2900.0	-	2900.0	X 0.2
Octane)	PAC-2	12000.0	-		
Formaldehyde	PAC-1	1.1	1.1	4.5	X 0.8
Formalderlyde	PAC-2	17.0	17.0		
Nitrogen Dioxide	PAC-1	0.9	0.9	0.8	V 0 =
Millogen Dioxide	PAC-2	23.0	13.0	0.8	X 0.5
Carbon monoxide	PAC-1	NA		NA	X 0.9
	PAC-2	95.0	31.0	NA	
	PAC-1	0.5	0.5	, ,	
Sulphur Dioxide	PAC-2	2.0	2.0	1.8	X 0.4

PAC 1 is concentration above which transient effects may occur. PAC 2 represents a concentration above which more permanent effects may occur. PACs are also defined for various exposure durations. Chemical Safety Program: PACs for Chemicals of Concern - Index (energy.gov)

